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Chapter 9 

Least-Squares Finite Element Solution of Compressible Euler 

Equations 
 

There are a number of fundamental differences between the numerical solution of incompressible 

and compressible flows. The first one is the necessity of using an equation of state (EOS) for 

compressible flows. For incompressible flows no EOS exist, but for incompressible flows we typically 

work with the following ideal gas EOS 

                                                                                     

which relates the pressure, density and temperature of a gas. Air is the most commonly used working 

fluid for compressible flow applications, for which the gas constant is              . 

The second major difference is the role of pressure. For incompressible flows pressure has no 

thermodynamic meaning, it just adjusts itself so that the velocity field remains incompressible at all 

times. But for compressible flows pressure is a thermodynamic variable related to other 

termodynamic variables through an EOS. 

Third difference is about the number of unknowns and equations. For a 3D, isothermal, 

incompressible flow the unknowns are three velocity components and pressure. These four scalars 

can be solved by the use of three scalar momentum equations and the continuity equation. If the 

flow is not isothermal then the temperature appears in the unknown list and the energy equation 

needs to be solved too, but except for natural convection problems energy equation is decoupled 

from the other equations and can be solved separately after obtaining the velocity field. But for 

compressible flows density and temperature are always in the unknown list. For a 3D, compressible 

flow there are 6 unknowns (three velocity components, density, pressure and temperature) which 

can be solved using 6 equations (three scalar momentum equations, continuity equation, energy 

equation and EOS). All these 6 equations are coupled and need to be solved together. 

Fourth difference is related to the numerical challenges and solution techniques that can be used. 

For incompressible flows pressure does not appear in the continuity equation and it is said that there 

is a weak coupling between velocity and pressure unknowns. LBB compatibility condition, related 

numerical instabilities and the use of stabilization techniques are mainly due to this weak coupling. 

However, for compressible flows density, which is related to pressure through the EOS, appears in 

the continuity equation and there is a stronger coupling between the unknowns. LBB compatibility 

condition does not exist for compressible flows, therefore we are not restricted to work with LBB-

stable elements. Altough, the use of artificial vicosity is common for the solution of Euler equations, 

residual based stabilization techniques such as SUPG or GLS are rarely used for compressible flow 

solutions. Compressible flows are almost always solved using the unsteady forms of the equations. 

Commonly used FE variants for compressible flows are Taylor-Galerkin FEM, Least-Squares FEM. 
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There are also important concepts like Flux Corrected Transport (FCT) and Total Variation Diminishing 

(TVD), which are only used for compressible flow solutions. 

9.1 Compressible Euler Equations 

 

Although inviscid Euler equations are rarely used for incompressible flow solutions, they are 

frequently used to simulate compressible flows. Especially for external aerodynamic flows over 

streamlined bodies such as wings, pressure distribution and the corresponding lift and drag 

coefficients are the main interest and Euler equations are capable of prediciting these for certain 

flow conditions. Euler equations should be used with care when viscous affects are important for 

problems such as internal flows and external aerodynamic flows with high angle of attack where flow 

separation can occur. 

In the context of numerical solution of compressible flows, the term “Euler equations” is used for the 

whole equation set including the consevation of mass, linear momentum and energy as given below 
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where   is the constant specific heat ratio, which is equal to 1.4 for air. In writing the energy 

equation (9.2c) ideal gas EOS is already used and for a 3D flow equation set (9.2) contains 5 scalar 

equations for 5 scalar unknowns (density, 3 velocity components and pressure). Equation set (9.2) 

takes the following form when written for a 2D flow on the xy-plane of the Cartesian coordinate 

system 

  

  
  

  

  
  

  

  
  

  

  
  

  

  
                                                         

  

  
  

  

  
  

  

  
 

 

 

  

  
                                                             

  

  
  

  

  
  

  

  
 

 

 

  

  
                                                             

  

  
  

  

  
  

  

  
   

  

  
   

  

  
                                                       

where the scalar unknowns are       and  . These unknowns can be combined into the following 

unknown vector 
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  {

 
 
 
 

}                                                                               

Using this unknown vector equation set (9.3) can be written in the following compact form 

  

  
   

  

  
   

  

  
                                                                   

where 
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9.2 Time Discretization 

 

In chapter 5 we studied semi-discrete formulation of unsteady problems. We’ll now follow a slightly 

different route and perform time discretization first, followed by space discretization. Let’s begin by 

introducing the following    vector 

                   or          [
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where    is the known solution at time level   and      is the unknown vector at the new time level 

   . Instead of solving for      directly, in this chapter we’ll prefer to solve for   . 

Continuity equation (9.3a) written for the new time level     is 

     

  
     

     

  
     

     

  
     

     

  
     

     

  
                               

The time derivative term of the above equation can be discretized using backward differencing as 

follows 

     

  
 

  

  
                                                                             

Using Eqn (9.7) in (9.8), unknowns of Eqn (9.8) at time level     can be expressed in terms of the 

known solution at level   and the difference between the two time levels. New continuity equation 

becomes 
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Neglecting the following higher order, i.e. small terms in the above equation 

  
   

  
   

   

  
   

   

  
   

   

   

it simplies to 
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As seen the unknown differences (  ,    and   ) are on the left hand side of the equation and the 

right hand side contains only known values of time level  . 

A similar procedure can be applied to the x-momentum equation (9.3b), y-momentum equation 

(9.3c) and  the energy equation (9.3d) to discretize the time deriative using backward differencing 

and introduce   terms as the new unknowns. The resulting equations are 
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This equation set (9.11) with the unknown vector    can be put in a compact form similar to Eqn 

(9.5) as follows 

            where             

 

  
   

 

  
                                                

with    and    matrices are given in Eqn (9.6) and the new    matrix and   vector are as follows 
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Note that for simplicity all the   subscripts are removed from   and  . 

9.3 Introduction to Least-Squares Finite Element Method (LSFEM) Using a 1D 

Model DE 

 

Eqn (9.12) is ready to be discretized in space, which will be done using Least-Squares FEM (LSFEM), 

instead of Galerkin FEM. In this section the following simple 1D model DE will be used to explain how 

LSFEM formulation works. 

 
  

  
                                                                               

Weighted integral statement written for a single element is 

∫             
 

  
                                                                    

where the residual is 

        
   

  
                                                                     

with the following typical approximate solution over an element e 

         ∑   
       

 

   

   

                                                                 

Main difference between Galerkin FEM and LSFEM is the selection of weight functions. In LSFEM the 

ith weight function is selected to be the derivative of the residual with respect to the ith nodal 

unknown. This selection also corresponds to the minimization of the integral of the square of the 
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residual, and that’s why the method is called “Least Squares”. To obtain the ith weight function let’s 

first substitute Eqn (9.16) into (9.15) to get 
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and take the derivative of this residual with respect  to   
  

     
  

   
        

   
 

  
        

                                                            

Using this ith weight function in Eqn (9.14), the ith equation for element e becomes 
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which can be arranged as follows 
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Therefore the elemental stiffness matrix and elemental force vector are defined as 
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In LSFEM, elemental stiffness matrix    is always symmetric, independent of the DE, which is an 

important advantage of the technique. 

9.4 LSFEM Formulation of Euler Equations 

 

Now we can apply the LSFEM technique that we learned in the previous section to the compressible 

Euler equations given by Eqn (9.12). Elemental stiffness matrix and force vector are given by Eqn 

(9.23). The important difference is that now we are not solving a single equation, but a set of 

equations and 4 unknowns are stored at each node of the FE mesh. 

Consider the following 3-node triangular element, with three unknowns at each node (NNU=3). For 

this element there are 12 unknowns and the elemental stiffness matrix will be 12x12 as seen below. 

It is composed of 4 sub matrices of size 3x12 each. First submatrix comes from the continuity eqn, 

second one is from x-momentum equation, etc. 
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Number of Element Nodes:    NEN = 3 

Number of Nodal Unknowns:    NNU = 4 

Number of Elemental Unknowns:   NEU = 12  

 

 

Figure 9.1 Three-node triangular element with 12 unknowns 
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Approximate solution over the element can be expressed as follows (Note that according to our 

previous formulation, unknowns are not the variables at the new time level but they are the 

difference of variables between the new and old time levels) 
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Using these approximations in the continuity equation (9.11a) we get (superscript e is dropped from 

the nodal unknowns for simplicty) 

3 

𝜌   𝑢   𝑣   𝑝  

2 
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where the nodal unknowns are shown in red. By taking the derivative of the residual of this equation 

with respect to the 1st , 2nd and 3rd unknowns, i.e.    ,      and    , we get the following first three 

weight functions 

   
 

  
     

   

  
   

   

  
   

   

  
   

   

  
 

   
 

  
     

   

  
   

   

  
   

   

  
   

   

  
 

   
 

  
     

   

  
   

   

  
   

   

  
   

   

  
 

Multipliying   with the residual of Eqn (9.25) and integrating over element e, we get the coefficients 

of the 1st row of Eqn (9.23). For example the very first entry of the elemental stiffness matrix 

corresponds to the terms multiplied by     and it is the  calculated as 
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Or the terms multiplied by    , which is the fourth unknown, gives the following coefficient 
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Rigth hand side of the 1st row is obtained as 

  
  

 ∫   

 

  
      

where    is the right hand side of Eqn (9.25). 

To get the entries of the 2nd and 3rd rows of Eqn (9.23)    and    are multipled with Eqn (9.25). 

Entries of the 4th, 5th and 6th row of the elemental system comes from the x-momentum equation 

(9.11b), which can be written as follows by substituting Eqn (9.24) in it 
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Taking the derivative of the residual of Eqn (9.26) with respect to the 4th, 5th and  6th elemental 

unknowns, i.e.    ,     and     we get the following 4th, 5th and 6th weight functions 

   
 

  
     

   

  
   

   

  
   

   

  
 

   
 

  
     

   

  
   

   

  
   

   

  
 

   
 

  
     

   

  
   

   

  
   

   

  
 

Multiplying    with the residual of Eqn (9.26) we can get the entries of the 4th row of the elemental 

system. Examples are 
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Similarly Eqns (9.11c) and (9.11d) can be used to come up with the remaining entries of the 

elemental system. 

9.5 Boundary Conditions 

 

Euler equations contain 1st order derivatives only and no integration by parts is applied. Actually in 

LSFEM integration by parts is never applied, instead high order derivatives are reduced to lower ones 

by the definition of new variables. But for Euler equations this is not necessary. Without integration 

by parts, LSFEM does not have any boundary integral term and therefore it does not support any 

natural or mixed BCs, but works only with essential BCs. This seems to be a restriction, but actually it 

is not. 

Euler equations model inviscid flows and no slip boundary condition can not be used with 

them. Instead “no penetration BC” is applied at solid walls, i.e. the velocity vectors should be 

tangent to solid walls or in other words velocity component perpendicular to a solid wall 

should be zero. In practice this BC is more difficult to code compared to the no-slip BC. Two 
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commonly used techniques to implement no penetration BC are the penalty method and 

coordinate rotation method, details of which can be found in reference [1]. 

Other than the solid walls, typical boundaries used in compressible Euler solutions are 

inflows and outflows. At inflows all nodal unknowns are specified and in general no BC is 

specified at outflows.  

9.6 Adaptive Mesh Refinement for Shock Capturing 

 

One important difficuty in the solution of compressible flows is the proper capturing of shock waves, 

which are very thin regions of the flow field with very high gradients. To resolve these discontinuities 

accurately very small elements are required. Since in general it is not possible to know the exact 

locations and strengths of the shock waves of a flow field, proper mesh generation is not easy. 

Solution based Adaptive Mesh Refinement (AMR)  becomes a necessity to automatically refine (and 

coarsen if necessary) the mesh according to the formation of shock waves. 

A number of different ideas can be used to determine the elements that needs to be refined. One 

common approach is to calculate a representative error value for each element as follows 

      |  |                                                                           

which is based on the area weighted pressure gradient (change of pressure) over the elements. Error 

values calculated for each element are normalized using the average value of the errors over all 

elements and than they are compared against a user specified tolerance value. Elements for which 

the normalized error value exceeds the limit are refined. 

Different strategies can be used to divide the elements that are labeled for refinement. For example 

triangular elements can be refined by dividing them into two using a line passing through the 

midpoint of their longest edge and the opposite corner. But as seen in Figure 9.2, such a refinement 

may result in hanging nodes (red node shown in the figure), which should be avoided by dividing the 

negihboring elements properly. In mesh coarsening a number of neighboring elements that are not 

labeled for refinement needs to be joined to form a single element, which is more difficult to 

implement in a code.  
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Figure 9.2 Possible element division for triangular elements. Left : Before refienement, Right : After 

refinement 

9.7 Sample Solution – Flow Over a Circular Bump 

 

This is a well known benchmark problem for compresile flow solvers. As seen in Figure 9.3, problem 

domain consists of a 2D duct with a circular bump at its bottom wall. Bump thichkness is adjusted 

such that it creates a 4 % blockage. Right boundary is defined as exit and no BC is specified there so 

that the flow can leave freely. Top and bottom boundaries are specified as solid walls. At the left 

boundary flow variables are specified as shown, so that inlet Mach number turns out to be 1.65 

(      is used for air). It is known that this supersonic incoming flow will interact with the bump 

and an oblique shock wave will emanate from the leading edge of the bump, which will reflect from 

the upper wall and will further interact with the oblique shock that will originate from the trailing 

edge of the bump. 

 

Figure 9.3 Flow over a circular arc bump problem 

Element flagged to be 

refined 

Neighbor element will 

also be divided to avoid 

the hanging node. 
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An adaptive solution is performed starting from the almost uniform mesh shown in Figure 9.4. After 

a number of adaptive refinement cycles the final mesh generated is also shown in the same figure. It 

is clearly seen that only the shock locations are refined. Figure 9.5 shows a zoomed view of the 

elements of the adapted mesh surrounding a shock wave. 

 

 

Figure 9.4 Initial and final (adapted) mesh for the flow over a circular bump problem 

 

Figure 9.5 Zoomed view of the elements of the adapted mesh surrounding a shock wave. Black thick 

lines show the initial mesh. 
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Pressure contours obtained with the final adapted mesh is shown in Figure 9.6. Note that pressure 

magnitude is nondimensionalized using the density and speed of sound at the inlet.  

 

Figure 9.6 Pressure contours for the flow over a circular bump problem obtained using the fian 

ladapted mesh 

9.8 Exercises 

 

E-9.1. In Section 9.4 only a couple entries of       and {  } are determined. Calculate the full 

elemental stiffness matrix and force vector. 

E-9.2. Flows over bullets, projectiles, missiles, etc. can effectively be solved as 2D using an 

axisymmetric formulation.  For this, following equation set should be used instead of Eqn (9.3). 

Determine how the differential operators   ,    and    will change compared to the planar 2D case. 

Obtain the elemental stiffness matrix and force vector. 
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